27 research outputs found

    Neural Architecture Search for Compressed Sensing Magnetic Resonance Image Reconstruction

    Full text link
    Recent works have demonstrated that deep learning (DL) based compressed sensing (CS) implementation can accelerate Magnetic Resonance (MR) Imaging by reconstructing MR images from sub-sampled k-space data. However, network architectures adopted in previous methods are all designed by handcraft. Neural Architecture Search (NAS) algorithms can automatically build neural network architectures which have outperformed human designed ones in several vision tasks. Inspired by this, here we proposed a novel and efficient network for the MR image reconstruction problem via NAS instead of manual attempts. Particularly, a specific cell structure, which was integrated into the model-driven MR reconstruction pipeline, was automatically searched from a flexible pre-defined operation search space in a differentiable manner. Experimental results show that our searched network can produce better reconstruction results compared to previous state-of-the-art methods in terms of PSNR and SSIM with 4-6 times fewer computation resources. Extensive experiments were conducted to analyze how hyper-parameters affect reconstruction performance and the searched structures. The generalizability of the searched architecture was also evaluated on different organ MR datasets. Our proposed method can reach a better trade-off between computation cost and reconstruction performance for MR reconstruction problem with good generalizability and offer insights to design neural networks for other medical image applications. The evaluation code will be available at https://github.com/yjump/NAS-for-CSMRI.Comment: To be appear in Computerized Medical Imaging and Graphic

    Match4Rec: A Novel Recommendation Algorithm Based on Bidirectional Encoder Representation with the Matching Task

    Full text link
    Characterizing users' interests accurately plays a significant role in an effective recommender system. The sequential recommender system can learn powerful hidden representations of users from successive user-item interactions and dynamic users' preferences. To analyze such sequential data, conventional methods mainly include Markov Chains (MCs) and Recurrent Neural Networks (RNNs). Recently, the use of self-attention mechanisms and bi-directional architectures have gained much attention. However, there still exists a major limitation in previous works that they only model the user's main purposes in the behavioral sequences separately and locally, and they lack the global representation of the user's whole sequential behavior. To address this limitation, we propose a novel bidirectional sequential recommendation algorithm that integrates the user's local purposes with the global preference by additive supervision of the matching task. We combine the mask task with the matching task in the training process of the bidirectional encoder. A new sample production method is also introduced to alleviate the effect of mask noise. Our proposed model can not only learn bidirectional semantics from users' behavioral sequences but also explicitly produces user representations to capture user's global preference. Extensive empirical studies demonstrate our approach considerably outperforms various state-of-the-art models.Comment: Accepted by ICONIP202

    Human-machine Interactive Tissue Prototype Learning for Label-efficient Histopathology Image Segmentation

    Full text link
    Recently, deep neural networks have greatly advanced histopathology image segmentation but usually require abundant annotated data. However, due to the gigapixel scale of whole slide images and pathologists' heavy daily workload, obtaining pixel-level labels for supervised learning in clinical practice is often infeasible. Alternatively, weakly-supervised segmentation methods have been explored with less laborious image-level labels, but their performance is unsatisfactory due to the lack of dense supervision. Inspired by the recent success of self-supervised learning methods, we present a label-efficient tissue prototype dictionary building pipeline and propose to use the obtained prototypes to guide histopathology image segmentation. Particularly, taking advantage of self-supervised contrastive learning, an encoder is trained to project the unlabeled histopathology image patches into a discriminative embedding space where these patches are clustered to identify the tissue prototypes by efficient pathologists' visual examination. Then, the encoder is used to map the images into the embedding space and generate pixel-level pseudo tissue masks by querying the tissue prototype dictionary. Finally, the pseudo masks are used to train a segmentation network with dense supervision for better performance. Experiments on two public datasets demonstrate that our human-machine interactive tissue prototype learning method can achieve comparable segmentation performance as the fully-supervised baselines with less annotation burden and outperform other weakly-supervised methods. Codes will be available upon publication.Comment: IPMI2023 camera read

    Uncertainty-driven Trajectory Truncation for Model-based Offline Reinforcement Learning

    Full text link
    Equipped with the trained environmental dynamics, model-based offline reinforcement learning (RL) algorithms can often successfully learn good policies from fixed-sized datasets, even some datasets with poor quality. Unfortunately, however, it can not be guaranteed that the generated samples from the trained dynamics model are reliable (e.g., some synthetic samples may lie outside of the support region of the static dataset). To address this issue, we propose Trajectory Truncation with Uncertainty (TATU), which adaptively truncates the synthetic trajectory if the accumulated uncertainty along the trajectory is too large. We theoretically show the performance bound of TATU to justify its benefits. To empirically show the advantages of TATU, we first combine it with two classical model-based offline RL algorithms, MOPO and COMBO. Furthermore, we integrate TATU with several off-the-shelf model-free offline RL algorithms, e.g., BCQ. Experimental results on the D4RL benchmark show that TATU significantly improves their performance, often by a large margin

    Towards Better Dermoscopic Image Feature Representation Learning for Melanoma Classification

    Full text link
    Deep learning-based melanoma classification with dermoscopic images has recently shown great potential in automatic early-stage melanoma diagnosis. However, limited by the significant data imbalance and obvious extraneous artifacts, i.e., the hair and ruler markings, discriminative feature extraction from dermoscopic images is very challenging. In this study, we seek to resolve these problems respectively towards better representation learning for lesion features. Specifically, a GAN-based data augmentation (GDA) strategy is adapted to generate synthetic melanoma-positive images, in conjunction with the proposed implicit hair denoising (IHD) strategy. Wherein the hair-related representations are implicitly disentangled via an auxiliary classifier network and reversely sent to the melanoma-feature extraction backbone for better melanoma-specific representation learning. Furthermore, to train the IHD module, the hair noises are additionally labeled on the ISIC2020 dataset, making it the first large-scale dermoscopic dataset with annotation of hair-like artifacts. Extensive experiments demonstrate the superiority of the proposed framework as well as the effectiveness of each component. The improved dataset publicly avaliable at https://github.com/kirtsy/DermoscopicDataset.Comment: ICONIP 2021 conferenc

    Assessing generalisability of deep learning-based polyp detection and segmentation methods through a computer vision challenge

    Get PDF
    Polyps are well-known cancer precursors identified by colonoscopy. However, variability in their size, appearance, and location makes the detection of polyps challenging. Moreover, colonoscopy surveillance and removal of polyps are highly operator-dependent procedures and occur in a highly complex organ topology. There exists a high missed detection rate and incomplete removal of colonic polyps. To assist in clinical procedures and reduce missed rates, automated methods for detecting and segmenting polyps using machine learning have been achieved in past years. However, the major drawback in most of these methods is their ability to generalise to out-of-sample unseen datasets from different centres, populations, modalities, and acquisition systems. To test this hypothesis rigorously, we, together with expert gastroenterologists, curated a multi-centre and multi-population dataset acquired from six different colonoscopy systems and challenged the computational expert teams to develop robust automated detection and segmentation methods in a crowd-sourcing Endoscopic computer vision challenge. This work put forward rigorous generalisability tests and assesses the usability of devised deep learning methods in dynamic and actual clinical colonoscopy procedures. We analyse the results of four top performing teams for the detection task and five top performing teams for the segmentation task. Our analyses demonstrate that the top-ranking teams concentrated mainly on accuracy over the real-time performance required for clinical applicability. We further dissect the devised methods and provide an experiment-based hypothesis that reveals the need for improved generalisability to tackle diversity present in multi-centre datasets and routine clinical procedures
    corecore